Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 821848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903551

RESUMO

Individuals with intrauterine growth restriction (IUGR) are at an increased risk for neurodevelopmental impairment. Fetal cortical neurogenesis is a time-sensitive process in which fetal neural stem cells (NSCs) follow a distinct pattern of layer-specific neuron generation to populate the cerebral cortex. Here, we used a murine maternal hypoxia-induced IUGR model to study the impact of IUGR on fetal NSC development. In this model, timed-pregnant mice were exposed to hypoxia during the active stage of neurogenesis, followed by fetal brain collection and analysis. In the IUGR fetal brains, we found a significant reduction in cerebral cortical thickness accompanied by decreases in layer-specific neurons. Using EdU labeling, we demonstrated that cell cycle progression of fetal NSCs was delayed, primarily observed in the G2/M phase during inward interkinetic nuclear migration. Following relief from maternal hypoxia exposure, the remaining fetal NSCs re-established their neurogenic ability and resumed production of layer-specific neurons. Surprisingly, the newly generated neurons matched their control counterparts in layer-specific marker expression, suggesting preservation of the fetal NSC temporal identity despite IUGR effects. As expected, the absolute number of neurons generated in the IUGR group remained lower compared to that in the control group due to a reduced fetal NSC pool size as a result of cell cycle defect. Transcriptome analysis identified genes related to energy expenditure and G2/M cell cycle progression being affected by maternal hypoxia-induced IUGR. Taken together, maternal hypoxia-induced IUGR is associated with a defect in cell cycle progression of fetal NSCs, and has a long-term impact on offspring cognitive development.

2.
Cancer Res ; 80(20): 4426-4438, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32816907

RESUMO

Regulation of the stemness factor, SOX2, by cytokine stimuli controls self-renewal and differentiation in cells. Activating mutations in EGFR are proven therapeutic targets for tyrosine kinase inhibitors (TKI) in lung adenocarcinoma, but acquired resistance to TKIs inevitably occurs. The mechanism by which stemness and differentiation signaling emerge in lung cancers to affect TKI tolerance and lung cancer dissemination has yet to be elucidated. Here, we report that cross-talk between SOX2 and TGFß signaling affects lung cancer cell plasticity and TKI tolerance. TKI treatment favored selection of lung cancer cells displaying mesenchymal morphology with deficient SOX2 expression, whereas SOX2 expression promoted TKI sensitivity and inhibited the mesenchymal phenotype. Preselection of EGFR-mutant lung cancer cells with the mesenchymal phenotype diminished SOX2 expression and TKI sensitivity, whereas SOX2 silencing induced vimentin, but suppressed BCL2L11, expression and promoted TKI tolerance. TGFß stimulation downregulated SOX2 and induced epithelial-to-mesenchymal transdifferentiation accompanied by increased TKI tolerance, which can interfere with ectopic SOX2 expression. SOX2-positive lung cancer cells exhibited a lower dissemination capacity than their SOX2-negative counterparts. Tumors expressing low SOX2 and high vimentin signature were associated with worse survival outcomes in patients with EGFR mutations. These findings provide insights into how cancer cell plasticity regulated by SOX2 and TGFß signaling affects EGFR-TKI tolerance and lung cancer dissemination. SIGNIFICANCE: These findings suggest the potential of SOX2 as a prognostic marker in EGFR-mutant lung cancer, as SOX2-mediated cell plasticity regulated by TGFß stimulation and epigenetic control affects EGFR-TKI tolerance and cancer dissemination.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Fatores de Transcrição SOXB1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Vimentina/metabolismo
3.
Cancer Res ; 77(11): 3013-3026, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381546

RESUMO

Mutations in EGFR drive tumor growth but render tumor cells sensitive to treatment with EGFR tyrosine kinase inhibitors (TKI). Phenotypic alteration in epithelial-to-mesenchymal transition (EMT) has been linked to the TKI resistance in lung adenocarcinoma. However, the mechanism underlying this resistance remains unclear. Here we report that high expression of a neuroendocrine factor termed VGF induces the transcription factor TWIST1 to facilitate TKI resistance, EMT, and cancer dissemination in a subset of lung adenocarcinoma cells. VGF silencing resensitized EGFR-mutated lung adenocarcinoma cells to TKI. Conversely, overexpression of VGF in sensitive cells conferred resistance to TKIs and induced EMT, increasing migratory and invasive behaviors. Correlation analysis revealed a significant association of VGF expression with advanced tumor grade and poor survival in patients with lung adenocarcinoma. In a mouse xenograft model of lung adenocarcinoma, suppressing VGF expression was sufficient to attenuate tumor growth. Overall, our findings show how VGF can confer TKI resistance and trigger EMT, suggesting its potential utility as a biomarker and therapeutic target in lung adenocarcinoma. Cancer Res; 77(11); 3013-26. ©2017 AACR.


Assuntos
Adenocarcinoma/genética , Antineoplásicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Receptores ErbB , Feminino , Humanos , Camundongos , Camundongos Nus , Mutação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...